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Tracking to Understand Scene Dynamics
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estimation in videos
(CVPR 2020 Oral)

Manchen Wang, Joseph Tighe, Davide Modolo

Combining detection and tracking for human pose ' @
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Introduction
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Differences and Benefits
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1. Compensates for
missed person
detections

2. Better predictions
on highly entangled
people

3. Produces more
temporally consistent

tracklets
ang>)



Our approach: 3 components

1. Clip tracking network
Performs both pose estimation and tracking simultaneously on a short video clip

c) Tracklets d) Joints reprojected
on original frames
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Our approach: 3 components

1. Clip tracking network
2. Video Tracking Pipeline

Fixed-length tracklets

Arbitrary length tracks
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Our approach: 3 components

1. Clip tracking network
2. Video Tracking Pipeline
3. Spatial-Temporal refinement

Merges multiple pose hypotheses --> picks the optimal one (spatial-temporal optimization)
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Hypothesis

right ankle

<

left knee

Clusters Baseline merge [ Spatial-Temporalmerge (ours)
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Results on validation set

- SOTA on both human pose estimation (mAP) and tracking (MOTA)
- SOTA on both PoseTrack 2017 and 2018 validation
-  SOTA against both top-down and bottom-up approaches

PoseTrack 2017 - validation PoseTrack 2018 - validation

JointFlow ["']
TML++ [ ]

Method MOTA mAP

STAF 60 9 70 4
TML++ [ ] 65 7 74.6

STAF [ 7]
STEmbedding [ | ~]
Detect&Track [ ]
PoseFlow [ ]
FastPose [ ']

FlowTrack [30] | N > MmoTA

HRNet [ 0] - : =
Our approach +6.5 MAP

PT_CPN++ [ ] 64 l 80.9
Our approach 81.5




Official challenge (Test set)

- SOTA on both PoseTrack2017 and 2018 benchmarks

Challenge 3: Multi-Person Pose Tracking

0. Additional Training Data total AP total MOTA
DetTrack + COCO 7414 64.09 \
+3 MOTA
KeyTrack + COCO 74.04 61.15

PGPT

CorrTrack

POINet







Multi-object Tracking with Siamese Track-RCNN v
(Under submission)

Bing Shuai, Andrew Berneshawi, Davide Modolo,
Joseph Tighe
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Siamese Track-RCNN

Three functional branches with joint training

Frame_ f

Tracks:

Continued
M Continued

Terminated
M Initiated

Feature
map t

| ONN
Track

\backb one / ‘
\ _, Detect
Online

Feature Js
map t + 0 Re-1D Solver




MOT Challenge 2017

Method
Siamese Track-RCNN

DeepMOT-Tracktor [51] 2019
Tracktor++ [5] 2019
DeepMOT-SiamRPN [51] 2019
eHAF [14] 2018
2017
2018
2019
2018
2015

FWT [27]

JCC [30)

STRN [53]
MOTDTI17 [7]
MHT_DAM [31]

Table 1. Results on MOT17 test set using the provided public detections.

2020 | 59.6

53.7
03.9
52.1
51.8
51.3
51.2
50.9
50.9
50.7

03.8
52.3
47.7
54.7
47.6
54.5
06.5
52.7
47.2

19.4%
19.5%
16.7%
23.4%
21.4%
20.9%
20.1%
17.5%
20.8%

36.6%
36.6%
41.7%
37.9%
35.2%
37.0%
37.0%
35.7%
36.9%

15532

11731
12201
12132
33212
24101
20937
27532
24069
22875

210519

247447
248047
255743
248047
247921
247822
246924
250768
202889

Year ‘MOTA TIDF1 1t MT1T MLJ] FPJ|] FNJ] IDsw|
60.1 23.9% 33.9%

2068

1947
2072
2271
1834
2648
1802
2093
2474
2314
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Tracking on JTA
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supervised Visual Representation Learning
(Under submission)

Daniel McKee, Bing Shuai, Davide Modolo,
Joseph Tighe, Svetlana Lazebnik

Improving Temporal Correspondence through Self- » @
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Task

R
o M

; &
'y

Given labeled starting frame,
propagate dense labels
through video using encoder F

il
v v
Labels are propagated based F F
on computed affinities ‘ ‘

B

F
between feature locations ‘

®/‘

We train F in a fully self- \ /
supervised manner ®
/ N 4
Input Mask
Predict Predict
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Previous Temporal Correspondence Methods

Colorizing video frames

Self-supervised signals:
Colorization
Temporal cycle consistency

Vondrick et al., 2018

Localization+colorization Temporal cycle consistency

All these methods rely only
inter-frame signals for
training

Wang et al., 2019

(b) Fine-grained matching

Li et al,, 2019 avid>»)
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Image-based Representation Learning

Motivation: ImageNet Classifiers sets a strong baseline without training on
video, what about self-supervised visual representation learning?

Self-supervised methods show similarly strong performance:

Method Supervision J F
RotNet X 44.8 50.7

DeepCluster VGG16 X 48.2 53.2
ImageNet Classifier v 01.3 956.6

Our goal: incorporate temporal-based objectives with image-based self-
supervised representation learning
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Our Method
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Visual representation learning
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Results

DAVIS: video object segmentation

Method Supervision J

RotNet X 44.8
TimeCycle [7] X 46.4
JointTask [4] 57.7

X
Ours X 61.3
e

ImageNet Classifier 51.3
OSVOS [1] v 56.6
DMM-Net [8] v 68.1

vor v/ /denote image-level or pixel supervision resp.

VIP: human part segmentation

Method Supervision mloU
RotNet 26.9
TimeCycle [7] 28.9

JointTask [4] 34.1 +4.2 mloU
Ours 38.3 22.2 «daREEly
‘ImageNet Classifier v 31.9 159

ATEN [9] 37.9

JHMDB: human keypoints

Method Supervision PCK@.1 PCK@.2

RotNet 56.0 76.1

TimeCycle [7] 57.3 78.1

JointTask [4] 58.6 79.8 ﬂg EEE@-;
Ours 59.8  81.3 > PCK@.

avg>))

ImageNet Classifier 57.3 78.5



Qualitative Results
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Qualitative Results
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Semantic Video Understanding @
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Activity Classification using Spatial-Temporal
Finegrained Discriminative Filter Banks

Brais Martinez Alonso, Davide Modolo, Yuanjun Xiong,
Joseph Tighe
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Activity Classification using Spatial-Temporal Finegrained
Discriminative Filter Banks

Local Feature Branch Discriminative Filter Bank

3x 2048x 3072x (CxN)x
64x224x224 3D ResNet 16x14x14 16x14x14 16x14x14

Z
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water skiing surfing water

swiming butterfly str

- ‘% q‘ '.‘T!."F--n. st

» Top: filters that have specialized on the person’s leg and the
object being ridden (- or )

« Bottom: filters that have specialized on the texture of the
water (wake or )

» Filters activate on the frame and location of the
swimmer appearing in a canonical pose
* Robust to viewpoints and scenes’ changes
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Directional Temporal Modeling For Action Recognition
(Under submission)

Xinyu Li, Bing Shuai, Joseph Tighe
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Channel Independent Directional Convolution (CIDC)

Split channel
into groups_

F

(C,T,W,H)
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Directional Convolution

Directional Convolution

S—

-

Merge groups
along channel

»

I I Conv3(1,1,1)

F}

(C',T',W,H)
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CIDC Implementation (Directional Mask)

4 t £

-inf
softmax + < F € REXCWH

Reshape the
convolution kernel
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CIDC Network

|
Backbone | CIDC Network

CIDC Apply spatial attention ~ ——»
(4,8,512)

28°@512
g
(U8 ]

Spatial feature aggregation

F, € (2C,T,W/2,H/2)

@ 2C

CIDC
(4,8,1024) (8,8,1024)

AvePool(1,2,2)

BN 3D

F, € (C,T,W, H)
C3D(1,1,1)@2C

<
o
=]
o
®
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Global Average ;
(4,8,2048) (8,8,2048) (8,4,2048) toncatehate Pooling :.’l Lincar




CIDC Results — Small dataset

+3.0%

R2D [12] 2D
R2D-NL [35] 2D
TSN [34] 2D

R3D [35]
R3D-NL [35]

Ours (R2D)
Ours (R2D-NL)

69.0
72.5
64.7

74.9
75.2

Model Conv HMDB51 UCF101

92.6
93.3
91.7

97.2
97.9
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CIDC Results — Large Dataset

+0.50%
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CIDC Visualization

Peeling Potato (no camera motion)

Clapping (camera moves to right)

Swel} €y

IN-AdH

=
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Spatial Temporal Separated Network v
(Under submission)
Xinyu Li*, Chunhui Liu*, Hao Chen, Yi Zhu,

Joseph Tighe
* equally contributed




Spatial Temporal Separated Network

. T
Spatlél [CiXTx mxﬂ] [CZXEX282] [C3X£X282] [C4XZ><282]
Sampling 2 2 4

—

> >
Temporal
[CXTXHXW] Sampling
> -»> —> —>

H W T
[CXTXZXI] [C1XTX%X§] [C4XZX72]

| EEE———————
Spatial Temporal Separated Sampling Spatial Temporal Separated Feature Learning

[CXTxHxW]
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Spatial Temporal Separated Network: Temporal Modeling

X'_t

HxW]

» Spatial temporal information
exchange by concat along channel

 Temporal to spatial feature

[CxT'x
aggregation by apply the same i
attention matrix ﬁ_:m -

Conv3D Conv3D Conv3D

(3x1 x1) (3x1 x1) (3x1 x1)

[CXT'xHxW]
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Spatial Temporal Separated Network

Version Spatial Branch GFLOPs |Top1
R2D-50 64 69.9
R2D-50 NL 72.9
13D-50 153 74.0
13D-50 NL 282 75.2
13D-101 167 75.1
13D-101-NL 359 76.0
IR-CSN-101 73 76.2
Slowfast-50 4x16 36 75.3
Slowfast-50 8x8 66 76.6
Slowfast-101 8x8 106 77.2
STS R2D-50 49 74.1
STS R2D-101 64 75.3
STS 13D-50 34 75.5
STS 13D-101 102 76.6
STS 13D-152 192 78.2

STS X3D-M* 5.7 73.1
a\l'< ))>
\—"



Temporal Affinity Map

Raw frame
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Visualization — More examples

-
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Visualization — Compare with 13D

STS 13D STS 13D STS. . 13D STS 13D
Activation Map  Activation Map Activation Map  Activation Map _ Activation Map  Activation Map Activation Map  Activation Map

FlERT




Rethinking Zero-shot Video Classification: @

End-to-end Training for Realistic Applications

Biagio Brattoli, Joseph Tighe, Fedor Zhdanov,
Pietro Perona , Krzysztof Chalupka




Task

Input video

Video encoder

Semantic
embedding

Label encoder
Label

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.
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Related Work

Very deep . Pretrained . Pretrained
2DCNN | f, Jv 3D fv \3D-cNN

Bidirectional
GRU

SoftAttention

LSTM

Custom Segment Attention

Matrix f, SoftAttention
‘Factorization® |’ ° LSTM
Multiple FC FC

f s | Comparison layer

Instance FC FC

Learning _ Pooling
Custom Ranking MetricILea rning

optimization cross loss loss

embedding entropy embedding embedding

Word2Vec ADE! ‘Word2Vec
“Crawling” ; “Crawling”

Complex models
Hard to reproduce
Poor performance

Zero-shot Learning
paradigm not enforced in

the pre-trained network
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Our Model

. Trainable
Out-of-the-box f v 3D-CNN
3D CNN o FC

Out-of-the-box
MSE loss

Protocol:

Trained once on Kinetics and
tested on multiple datasets
(UCF101, HMDB, Activity)

Simple
Easy to reproduce
Good performance

ZSL paradigm enforced

avy))



Enforcing ZSL paradigm

Kinetics (train)
Kinetics (removed)
SUN (train)

{ UCF101 (test)

Zero-shot learning paradigm:
Training and testing classes should NOT overlap

Previous methods:
The ZSL paradigm is not enforced in the
pre-trained CNN.

Example:

“kayaking” (UCF101) and

“canoeing and kayaking” (Kinetics)

are overlapping even though they have
different names




Comparison: strict ZSL protocol

We outperform state-of-the-art while using strict ZSL protocol.

Dataset VisualFeat
URL [64] ResNet200

DataAug [60] -
InfDem [39] 3D
Bidirectional [55] IDT
FairZSL [40] -
TARN [4] C3D
Action2Vec [18] C3D

Ours(605classes) C3D
Ours(664classes) C3D

42.5

18.3
17.8
21.4

41.5
43.8

Ours(605classes) R(2+1)D_18 44.1
Ours(664classes) R(2+1)D_18 48

51.8

19.7
21.3
18.9
23.1
19.5
23:9

25.0
24.7
29.8
32.7

UCF HMDB Activity

24.8

26.6
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Weakness/Strenghts study

Better more training samples or classes?

lasses

ing c

=
(O
—
)
Y
@)
. SN
(D)
i®)
=
- )
=

- = Baseline (664 classes)
- = Baseline (incr. classes)
- Qurs (664 classes)
- Qurs (incr. classes)

Number of training samples
E“ﬂi')}>
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Conclusion

Contributions:

First end-to-end model for ZSL video
classification

Strong and simple baseline for future work
Cheap method for increasing training
classes for a more robust model.

Deep study of ZSL weaknesses and

strengths

~ Custom

Factorization ' LSTM

Baseline

Ours
A

Action2Vec
TARN

4 x 10°
Number of training samples
Action2Vec

Pretrained

Very deep f |
J v 3D-CNN

2D-CNN fv
SoftAttention

LSTM
Matrix f SoftAttention
S

Multiple FC
Instance FC

Learning
Custom

optimization crggs loss
embedding embedding

Ranking

entropy

WordZVec label

“Crawling” “Crawling”

f-v 3D-CNN
Bidirectional

- Word2Vec

TARN

. Trainable
Jo 3D-CNN

f ;I

Pretrained

GRU

Segment Attention

f s | Comparison layer

FC
FC

Pooling
Metrir:ILearning
loss

embedding embedding

Word2Vec
“Crawling”

avy))

Word2Vec
“Crawling”




Bidirectional GANs for Unsupervised Video ™
Representation Learning

Tom F. H. Runia, Andrew Berneshawi, Rahul Rama Varior, Davide Modolo
Joseph Tighe




BigBiGAN like Setup For Videos

Discriminator




BigBiGAN like Setup For Videos

Generator

Self attention

|atent code

AN

ZNPZ

video frames

Discriminator

frame sampling

M.«

sampling

X o~ Py
X~ G(z)

slow pathway

fast pathway

Ly
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Embedding Performance

)

——Classifier Accuracy
1S

20k 40k 80k 160k 215k
Training steps




Generator Examples
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Cycle Examples
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Cycle Examples

. |
S

& e
- (e
I A -
i

© £ZUZU, AMazon wepD >Services, INC. Or ITS ATTILIATES. ALL rIgnts reserved. Amazon conriaential ana Iraaemark.



Training Evolution
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Fast Training and Inference ‘ ;

Chunhui Liu, Xinyu Li, Joseph Tighe




Video Model Fast Training Effort

Cross Instance Distributed Data Parallel (DDP) for Videos

« Easy deployment on multiple AWS instances
« Support both video and image model

Multi Grid Training’

« Speedup training by rescaling input size

Scale

Instance O Instance 1 Instance n

GPU rank 8 GPU rank 8n 16X
GPU rank 1 GPU rank 8n+1 8x g i % O @)
ces GPU rank 8n+2 Ax g gg ﬂ i %

GPU rank 11 GPU rank 8n+3 2X

GPU rank 7 GPU rank 15 GPU rank 8n+7 1X .
Iterations

1 A Multigrid Method for Efficiently Training Video Models

Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Feichtenhofer, Philipp Krahenbiihl CVPR 2020
avﬂ )
\_r' )>



Cross Instance DDP Training for Videos

Distributed Data Parallel (DDP) make it possible to use multiple instances on
AWS for model training.

Each GPU has its own forward-backward process. Then, DDP uses collective
functions to synchronize gradients and buffers among GPUs.

The tricky part is to fully balance GPU utilization for running data flow and CPU
utilization for loading data. Decord make this possible.

Instance O Instance 1 Instance 2 Instance n

GPU rank 8 GPU rank 16 GPU rank 8n
GPU rank 1 GPU rank 17 GPU rank 8n+1

GPU rank 10 GPU rank 18 XL GPU rank 8n+2

GPU rank 11 GPU rank 19 GPU rank 8n+3

GPU rank 7 GPU rank 8n+7
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Multi Grid Training

Down-sample input data so that we can scale-up batch size, and thus
speedup training process.

Short-cycle Scaling Strategy happens for each iteration.
Long-cycle Scaling Strategy happens in each learning rate stage.

Short Cycle

Long Cycle XX

5.

I« Epoch = «++ [« Epoch -»j1«Epoch =] +++ [ Epoch - [«-Epoch 3 « = « [ Epoch o ]
" Co " i Iterations
|
Learning Rate = 0.1 A D= Learning Rate = 0.01

I i




Video Model Fast Training: A result

Distributed Data Parallel (DDP)

« Test on Kinetics 400 dataset, with 8x p3.16xlarge instances (64x Tesla V100).
* 4 epoch/hour, 12 hour to fully train an 13D model.

Multi Grid Training + DDP

* 3 times speedup using short-cycle only,
* 4 times speedup using long-short cycle.
* 3 hour to fully train an I3D model.

Important Learnings
« Short-cycle is more stable than long-short cycle.
* Long-short cycle becomes unstable if temporal down-sampling is too aggressive.

* In Multi Grid training, we found that training is more stable without using
learning rate - batch scaling rule.

* Single grid finetuning can help with ~0.5% accuracy.

)



Video Model Fast Inference Effort

Current Approaches:
« Efficient Neural Architecture Search (NAS)
 Model Compression and Distillation
 Model on Compressed Data

Our effort:
« Single Pass Feature Selection Model for Video Fast Inference (Ongoing)
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Motivation: From Multi Crop to One Pass

« Most state-of-the-art methods use short clips at training time and thus at test require dense

oversampling to achieve high performance numbers.

« We want to avoid dense sampling during inference time and maintains this performance

Result
Fusion

Clip
Classification

Dense Sampling

Result
Fusion

Clip
Classification
Clip
Selection

Selection + Sampling

Clip
Classification

Feature
Compression

Feature
Extraction



Results on R50 13D

64x30 13D baseline

256 frame randomly choose one 64 clip

256 frame forward

256 frame Feature Selection

dWsS



Future of Video Research

« Datasets

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.



Future of Video Research

e Datasets
e Tasks
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Links to Work Presented

This video includes descriptions of the following work:

Combining detection and tracking for human pose estimation in videos:
https://assets.amazon.science/9¢/68/ce3ec91b41c1b6a20ee1e793709d/scipub-1326.pdf

Multi-Object Tracking with Siamese Track-RCNN: https://arxiv.org/pdf/2004.07786

Action Recognition With Spatial-Temporal Discriminative Filter Banks:
http://openaccess.thecvf.com/content ICCV 2019/papers/Martinez Action Recognition With Spatial-
Temporal Discriminative Filter Banks ICCV 2019 paper.pdf

Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications:
https://assets.amazon.science/b3/28/0702b5ec441aaadcb79040b58128/scipub-1328.pdf
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