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Tracking to Understand Scene Dynamics
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Tracking to Understand Scene Dynamics
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Combining detection and tracking for human pose 
estimation in videos
(CVPR 2020 Oral)
Manchen Wang, Joseph Tighe, Davide Modolo
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1. Compensates for 
missed person 
detections

2. Better predictions 
on highly entangled 
people

3. Produces more 
temporally consistent 
tracklets

Differences and Benefits
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Our approach: 3 components
1. Clip tracking network

Performs both pose estimation and tracking simultaneously on a short video clip
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1. Clip tracking network
2. Video Tracking Pipeline

Our approach: 3 components
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1. Clip tracking network
2. Video Tracking Pipeline
3. Spatial-Temporal refinement

Merges multiple pose hypotheses --> picks the optimal one (spatial-temporal optimization)

Our approach: 3 components
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Results on validation set

PoseTrack 2018 - validationPoseTrack 2017 - validation

+6.5 mAP

+3 
MOTA

+6.2 MOTA

- SOTA on both human pose estimation (mAP) and tracking (MOTA)

- SOTA on both PoseTrack 2017 and 2018 validation

- SOTA against both top-down and bottom-up approaches 
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Official challenge (Test set)

+3 MOTA

- SOTA on both PoseTrack2017 and 2018 benchmarks
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Multi-object Tracking with Siamese Track-RCNN
(Under submission)

Bing Shuai, Andrew Berneshawi, Davide Modolo, 
Joseph Tighe
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Siamese Track-RCNN

Three functional branches with joint training
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MOT Challenge 2017
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Tracking on JTA
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Improving Temporal Correspondence through Self-
supervised Visual Representation Learning
(Under submission)
Daniel McKee, Bing Shuai, Davide Modolo, 
Joseph Tighe, Svetlana Lazebnik
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Task

Given labeled starting frame, 
propagate dense labels 
through video using encoder 𝐹
Labels are propagated based 
on computed affinities 
between feature locations

We train 𝐹 in a fully self-
supervised manner

Input Mask
Predict Predict

⨂ ⨂

𝐹 𝐹 𝐹
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Previous Temporal Correspondence Methods 

Self-supervised signals:
Colorization
Temporal cycle consistency

All these methods rely only 
inter-frame signals for 
training

Vondrick et al., 2018

Wang et al., 2019

Colorizing video frames

Temporal cycle consistency

Li et al., 2019

Localization+colorization
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Image-based Representation Learning

Motivation: ImageNet Classifiers sets a strong baseline without training on 
video, what about self-supervised visual representation learning?
Self-supervised methods show similarly strong performance:

Our goal: incorporate temporal-based objectives with image-based self-
supervised representation learning
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Our Method

0°
90°
180°
270°

Patch localization & colorization

Visual representation learning

Encoder

Classifier
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Results

DAVIS: video object segmentation VIP: human part segmentation

JHMDB: human keypoints

+3.6 J 
+4.8 F

+4.2 mIoU
+4.5 AP

+1.2 PCK@.1
+1.5 PCK@.2
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Qualitative Results

Input OursJointTask GT
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Qualitative Results
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Semantic Video Understanding
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Activity Classification using Spatial-Temporal 
Finegrained Discriminative Filter Banks

Brais Martinez Alonso, Davide Modolo, Yuanjun Xiong, 
Joseph Tighe
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Activity Classification using Spatial-Temporal Finegrained
Discriminative Filter Banks
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• Filters activate on the frame and location of the
swimmer appearing in a canonical pose

• Robust to viewpoints and scenes’ changes

• Top: filters that have specialized on the person’s leg and the
object being ridden (ski or surf)

• Bottom: filters that have specialized on the texture of the
water (wake or wave)

water skiing surfing water swimming backstroke

swimming butterfly stroke

swimming breast stroke
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Directional Temporal Modeling For Action Recognition
(Under submission)

Xinyu Li, Bing Shuai, Joseph Tighe
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Channel Independent Directional Convolution (CIDC)
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Group k

…

Merge groups 
along channel Conv3(1,1,1)
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CIDC Implementation (Directional Mask)
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CIDC Network
Backbone CIDC Network
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CIDC Results – Small dataset
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CIDC Results – Large Dataset
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CIDC Visualization
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Spatial Temporal Separated Network 
(Under submission)

Xinyu Li*, Chunhui Liu*, Hao Chen, Yi Zhu, 
Joseph Tighe
* equally contributed
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Spatial Temporal Separated Network
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Spatial Temporal Separated Network: Temporal Modeling

• Spatial temporal information 
exchange by concat along channel

• Temporal to spatial feature 
aggregation by apply the same 
attention matrix 
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Conv3D 
( 3×1 ×1)

Conv3D 
( 3×1 ×1)

Conv3D 
( 3×1 ×1)

[𝐶×𝑇′×𝐻×𝑊]

X

[𝑇′×𝑪𝑯𝑾] [𝑇×𝑪𝑯𝑾]

X

[𝑇′×𝑇]
softmax

[𝑇×𝑪𝑯𝑾]

Conv3D 
( 1×1 ×1)

[𝐶×𝑇′×𝐻×𝑊]

[𝐶′×𝑇′×𝐻×𝑊]

X_t

𝜑(x)𝜃(x)∅(x)

X_s C

Conv3D 
( 3×1 ×1)

X’_t

X

Conv3D 
( 1×1 ×1)

X’_s



© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.

Spatial Temporal Separated Network
Version Spatial Branch GFLOPs Top1
R2D-50 64 69.9
R2D-50 NL 72.9
I3D-50 153 74.0
I3D-50 NL 282 75.2
I3D-101 167 75.1
I3D-101-NL 359 76.0
IR-CSN-101 73 76.2
Slowfast-50 4x16 36 75.3
Slowfast-50 8x8 66 76.6
Slowfast-101 8x8 106 77.2
STS R2D-50 49 74.1
STS R2D-101 64 75.3
STS I3D-50 34 75.5
STS I3D-101 102 76.6
STS I3D-152 192 78.2
STS X3D-M* 5.7 73.1
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Temporal Affinity Map
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Visualization – More examples
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Visualization – Compare with I3D
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Rethinking Zero-shot Video Classification: 
End-to-end Training for Realistic Applications

Biagio Brattoli, Joseph Tighe, Fedor Zhdanov,
Pietro Perona， Krzysztof Chalupka
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“Crawling”
Word2Vec

embedding

Word2Vec

Semantic
embedding

Model

Input video

Label

Video encoder

Label encoder

visual
embedding

Task
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l Complex models

l Hard to reproduce

l Poor performance

l Zero-shot Learning 

paradigm not enforced in 

the pre-trained network

Related Work
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l Simple

l Easy to reproduce

l Good performance

l ZSL paradigm enforced

Out-of-the-box
3D CNN

Out-of-the-box
MSE loss

Protocol: 
Trained once on Kinetics and 
tested on multiple datasets 
(UCF101, HMDB, Activity)

Our Model
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Enforcing ZSL paradigm

Zero-shot learning paradigm:
Training and testing classes should NOT overlap

Previous methods:
The ZSL paradigm is not enforced in the 
pre-trained CNN.

Example:
“kayaking” (UCF101) and 
“canoeing and kayaking” (Kinetics)
are overlapping even though they have 
different names
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Comparison: strict ZSL protocol

We outperform state-of-the-art while using strict ZSL protocol.
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Weakness/Strenghts study
Better more training samples or classes?
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Conclusion

Contributions:

l First end-to-end model for ZSL video 

classification

l Strong and simple baseline for future work

l Cheap method for increasing training 

classes for a more robust model.

l Deep study of ZSL weaknesses and 

strengths
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Bidirectional GANs for Unsupervised Video 
Representation Learning

Tom F. H. Runia, Andrew Berneshawi, Rahul Rama Varior, Davide Modolo, 
Joseph Tighe
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BigBiGAN like Setup For Videos
MolGAN: An implicit generative model for small molecular graphs

Nicola De Cao
1

Thomas Kipf
1

Abstract

Deep generative models for graph-structured data
offer a new angle on the problem of chemical
synthesis: by optimizing differentiable models
that directly generate molecular graphs, it is pos-
sible to side-step expensive search procedures in
the discrete and vast space of chemical structures.
We introduce MolGAN, an implicit, likelihood-
free generative model for small molecular graphs
that circumvents the need for expensive graph
matching procedures or node ordering heuris-
tics of previous likelihood-based methods. Our
method adapts generative adversarial networks
(GANs) to operate directly on graph-structured
data. We combine our approach with a reinforce-
ment learning objective to encourage the genera-
tion of molecules with specific desired chemical
properties. In experiments on the QM9 chemi-
cal database, we demonstrate that our model is
capable of generating close to 100% valid com-
pounds. MolGAN compares favorably both to
recent proposals that use string-based (SMILES)
representations of molecules and to a likelihood-
based method that directly generates graphs, al-
beit being susceptible to mode collapse.

1. Introduction

Finding new chemical compounds with desired properties
is a challenging task with important applications such as
de novo drug design (Schneider & Fechner, 2005). The
space of synthesizable molecules is vast and search in this
space proves to be very difficult, mostly owing to its discrete
nature.

Recent progress in the development of deep generative mod-
els has spawned a range of promising proposals to address
this issue. Most works in this area (Gómez-Bombarelli
et al., 2016; Kusner et al., 2017; Guimaraes et al., 2017;
Dai et al., 2018) make use of a so-called SMILES repre-
sentation (Weininger, 1988) of molecules: a string-based

1Informatics Institute, University of Amsterdam, Amster-
dam, The Netherlands. Correspondence to: Nicola De Cao
<nicola.decao@gmail.com>.

Molecular graph
Generator Discriminator

Reward 
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

Figure 1. Schema of MolGAN. A vector z is sampled from a prior
and passed to the generator which outputs the graph representation
of a molecule. The discriminator classifies whether the molecular
graph comes from the generator or the dataset. The reward net-
work tries to estimate the reward for the chemical properties of a
particular molecule provided by an external software.

representation derived from molecular graphs. Recurrent
neural networks (RNNs) are ideal candidates for these rep-
resentations and consequently, most recent works follow the
recipe of applying RNN-based generative models on this
type of encoding. String-based representations of molecules,
however, have certain disadvantages: RNNs have to spend
capacity on learning both the syntactic rules and the order
ambiguity of the representation. Besides, this is approach
not applicable to generic (non-molecular) graphs.

SMILES strings are generated from a graph-based represen-
tation of molecules, thereby working in the original graph
space has the benefit of removing additional overhead. With
recent progress in the area of deep learning on graphs (Bron-
stein et al., 2017; Hamilton et al., 2017), training deep gen-
erative models directly on graph representations becomes a
feasible alternative that has been explored in a range of re-
cent works (Kipf & Welling, 2016b; Johnson, 2017; Grover
et al., 2017; Li et al., 2018b; Simonovsky & Komodakis,
2018; You et al., 2018).

Likelihood-based methods for molecular graph generation
(Li et al., 2018b; Simonovsky & Komodakis, 2018) how-
ever, either require providing a fixed (or randomly chosen)
ordered representation of the graph or an expensive graph
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BigBiGAN like Setup For Videos
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Embedding Performance
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Generator Examples
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Cycle Examples



© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.

Cycle Examples
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Training Evolution
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Fast Training and Inference

Chunhui Liu, Xinyu Li, Joseph Tighe
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Video Model Fast Training Effort
Cross Instance Distributed Data Parallel (DDP) for Videos

• Easy deployment on multiple AWS instances
• Support both video and image model

Multi Grid Training1

• Speedup training by rescaling input size

1 A Multigrid Method for Efficiently Training Video Models
Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Feichtenhofer, Philipp Krähenbühl CVPR 2020
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Cross Instance DDP Training for Videos

Distributed Data Parallel (DDP) make it possible to use multiple instances on 
AWS for model training. 
Each GPU has its own forward-backward process. Then, DDP uses collective 
functions to synchronize gradients and buffers among GPUs.
The tricky part is to fully balance GPU utilization for running data flow and CPU 
utilization for loading data. Decord make this possible.
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Multi Grid Training

Down-sample input data so that we can scale-up batch size, and thus 
speedup training process.
Short-cycle Scaling Strategy happens for each iteration.
Long-cycle Scaling Strategy happens in each learning rate stage.
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Video Model Fast Training: A result

Distributed Data Parallel (DDP)
• Test on Kinetics 400 dataset, with 8x p3.16xlarge instances (64x Tesla V100).
• 4 epoch/hour, 12 hour to fully train an I3D model.

Multi Grid Training + DDP
• 3 times speedup using  short-cycle only, 
• 4 times speedup using long-short cycle.
• 3 hour to fully train an I3D model.

Important Learnings
• Short-cycle is more stable than long-short cycle. 
• Long-short cycle becomes unstable if temporal down-sampling is too aggressive.
• In Multi Grid training, we found that training is more stable without using 

learning rate - batch scaling rule. 
• Single grid finetuning can help with ~0.5% accuracy.
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Video Model Fast Inference Effort

Current Approaches:
• Efficient Neural Architecture Search (NAS)
• Model Compression and Distillation
• Model on Compressed Data

Our effort:
• Single Pass Feature Selection Model for Video Fast Inference (Ongoing)



© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.

Motivation: From Multi Crop to One Pass

● Most state-of-the-art methods use short clips at training time and thus at test require dense 
oversampling to achieve high performance numbers.

● We want to avoid dense sampling during inference time and maintains this performance
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Results on R50 I3D

Method Top-1 
Acc

Top-5 Acc FLOPS

64x30 I3D baseline 73.8 91.0 998G

256 frame randomly choose one 64 clip 62.3 78.38 33G

256 frame forward 69.2 88.2 133G

256 frame Feature Selection 71.83 89.6 154G
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Future of Video Research

• Datasets
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Future of Video Research

• Datasets
• Tasks
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Thanks
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Links to Work Presented

This video includes descriptions of the following work: 

Combining detection and tracking for human pose estimation in videos: 
https://assets.amazon.science/9c/68/ce3ec91b41c1b6a20ee1e793709d/scipub-1326.pdf

Multi-Object Tracking with Siamese Track-RCNN: https://arxiv.org/pdf/2004.07786

Action Recognition With Spatial-Temporal Discriminative Filter Banks: 
http://openaccess.thecvf.com/content_ICCV_2019/papers/Martinez_Action_Recognition_With_Spatial-
Temporal_Discriminative_Filter_Banks_ICCV_2019_paper.pdf

Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications: 
https://assets.amazon.science/b3/28/0702b5ec441aaadcb79040b58128/scipub-1328.pdf

https://assets.amazon.science/9c/68/ce3ec91b41c1b6a20ee1e793709d/scipub-1326.pdf
https://arxiv.org/pdf/2004.07786
http://openaccess.thecvf.com/content_ICCV_2019/papers/Martinez_Action_Recognition_With_Spatial-Temporal_Discriminative_Filter_Banks_ICCV_2019_paper.pdf
https://assets.amazon.science/b3/28/0702b5ec441aaadcb79040b58128/scipub-1328.pdf

