

Tutorial on Video Modeling A Chronological Review of Recent SoTA and Beyond

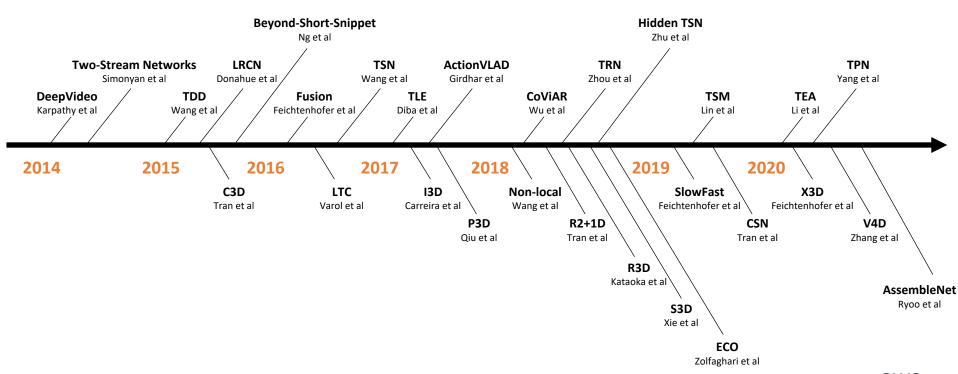
Yi Zhu 06/14/2020

Chronological review

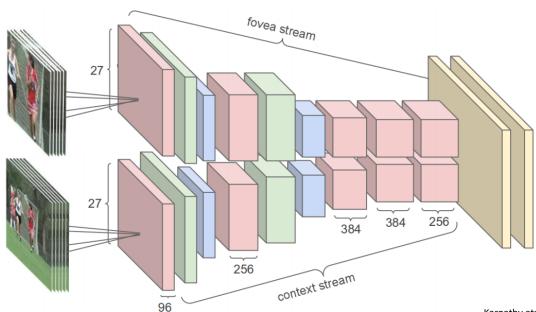
Single-stream network
Two-stream networks
3D CNNs
Other motion modeling methods

GluonCV video toolkit

Comprehensive and reproducible model zoo Flexible and customized usage Detailed documentation and tutorials

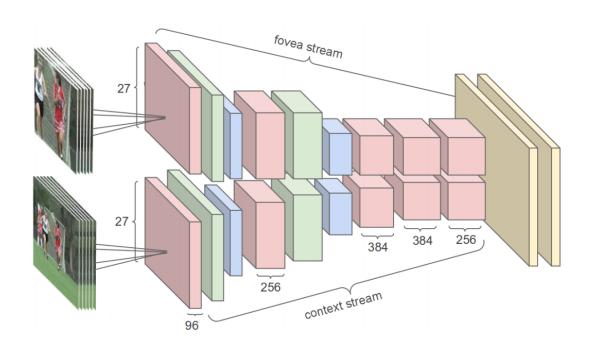


A Chronological Review of Recent SoTA



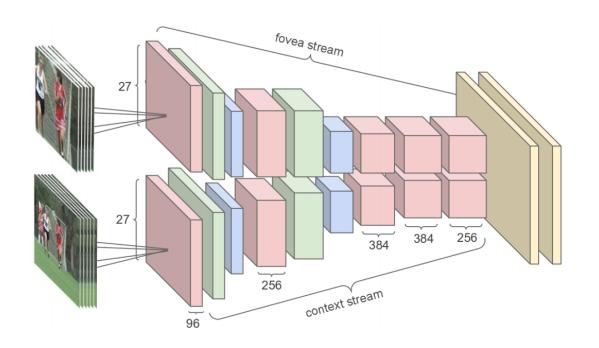
Single-Stream Network

Single Stream Network



Karpathy etal, Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Single Stream Network

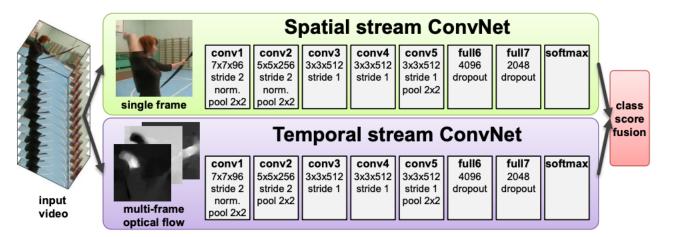


	UCF101
IDT	87.9%
DeepVideo	65.4%

Single Stream Network

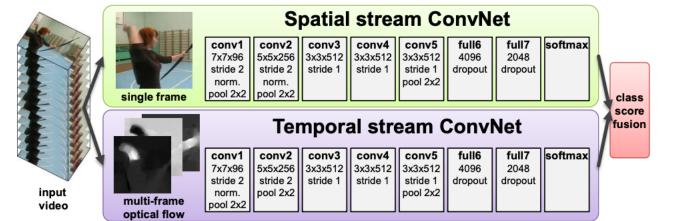
	UCF101
IDT	87.9%
DeepVideo	65.4%

Lack of motion modeling



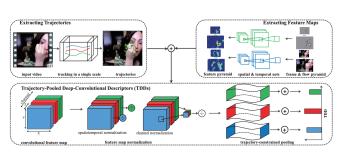
Two-Stream Networks

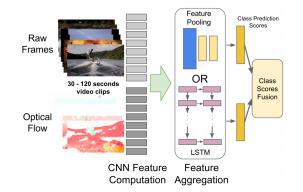
Two-Stream Networks

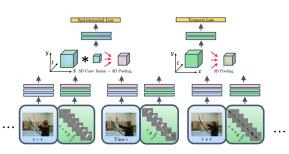


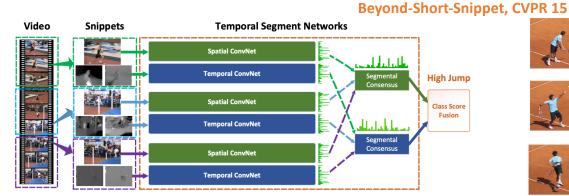
Simonyan etal, Two-Stream Convolutional Networks for Action Recognition in Videos, NeurIPS 2014

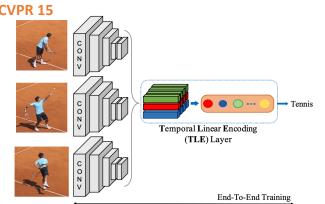
Two-Stream Networks




	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%

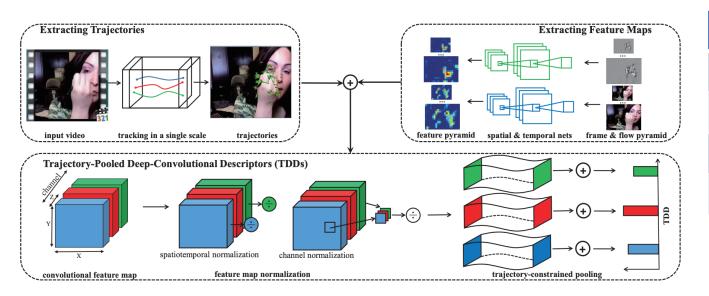

Simonyan etal, Two-Stream Convolutional Networks for Action Recognition in Videos, NeurIPS 2014





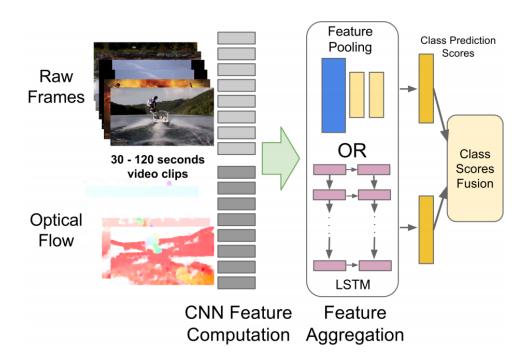
Two-stream Fusion, CVPR 16

TDD, CVPR 15



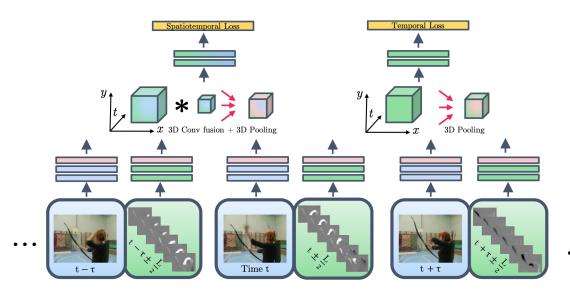
TSN, ECCV 16

aws



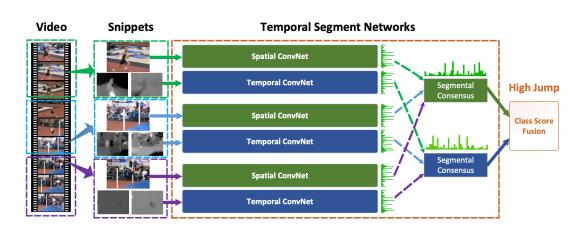
	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
TDD	91.5%

Wang etal, Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors, CVPR 2015



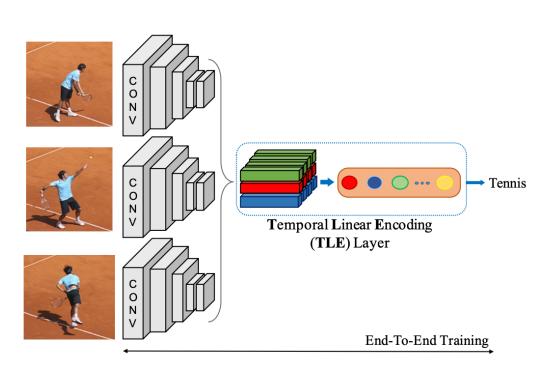
	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
TDD	91.5%
Beyond-Short-Snippets	88.6%

Ng etal, Beyond Short Snippets: Deep Networks for Video Classification, CVPR 2015



	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
TDD	91.5%
Beyond-Short-Snippets	88.6%
Two-Stream Fusion	92.5%

Feichtenhofer etal, Convolutional Two-Stream Network Fusion for Video Action Recognition, CVPR 2016



	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
TDD	91.5%
Beyond-Short-Snippets	88.6%
Two-Stream Fusion	92.5%
TSN	94.0%

Wang etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016

	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
TDD	91.5%
Beyond-Short-Snippets	88.6%
Two-Stream Fusion	92.5%
TSN	94.0%
TLE	95.6%

Diba etal, Deep Temporal Linear Encoding Networks, CVPR 2017

3D CNNs

3D CNNs

Conv1a 64

Conv2a 128

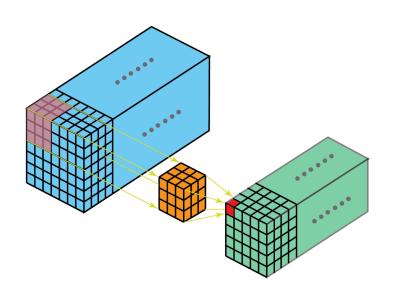
Conv3a 256

Conv3b 256

Conv4a 512

Conv4b 512

Pool4

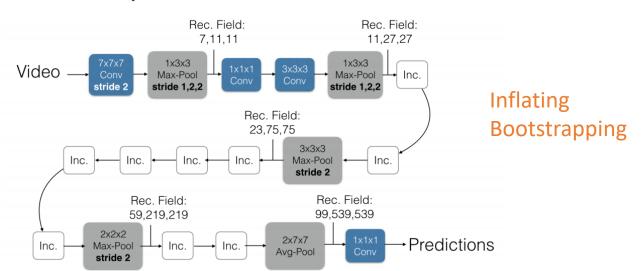

Conv5a 512

Conv5b 512

fc6

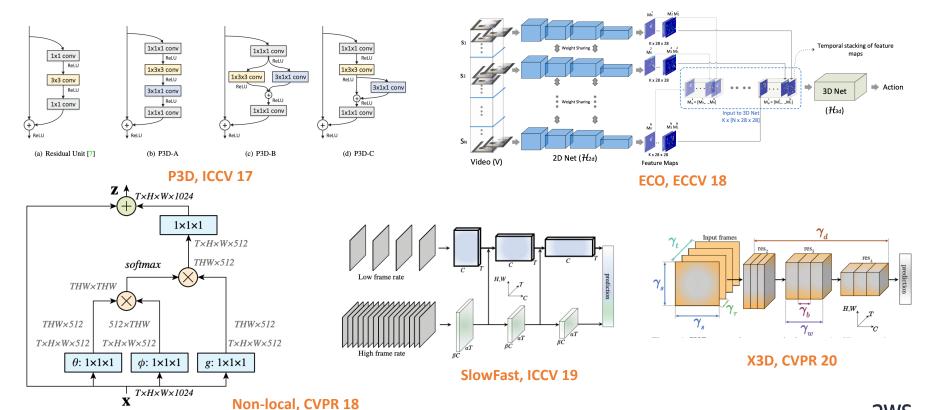
fc7

	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
C3D	82.3%


Tran etal, Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

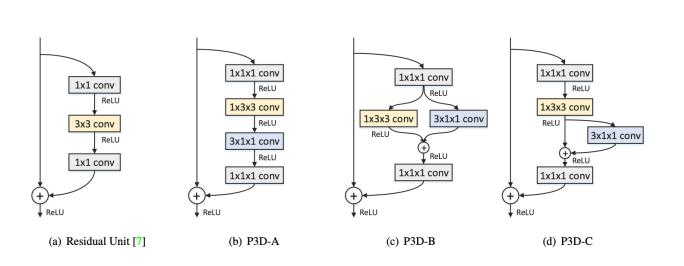
3D CNNs

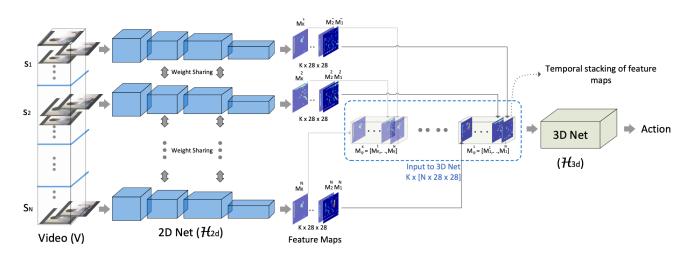
Inflated Inception-V1



	UCF101
IDT	87.9%
DeepVideo	65.4%
Two-stream	88.0%
C3D	82.3%
I3D	95.6%

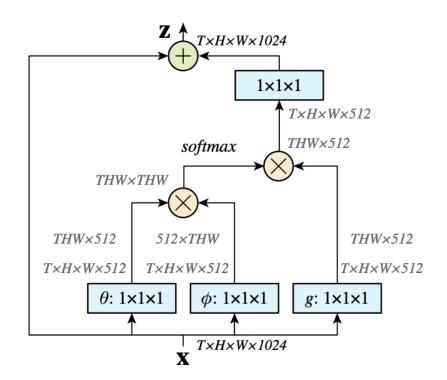
Carreira etal, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017





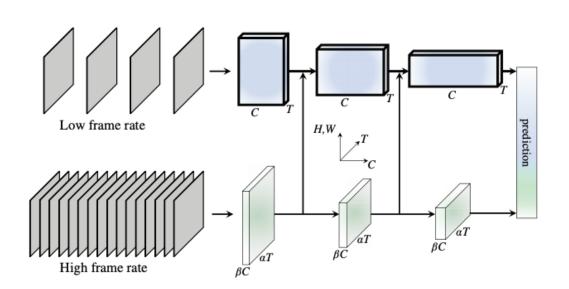
	Kinetics400
C3D	59.5%
I3D	71.1%
P3D	72.6%

Qiu etal, Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks, ICCV 2017



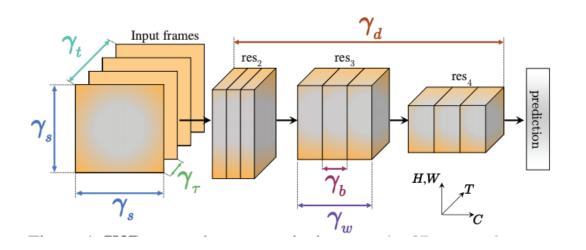
	Kinetics400
C3D	59.5%
I3D	71.1%
P3D	72.6%
ECO	70.0%

Zolfaghari etal, ECO: Efficient Convolutional Network for Online Video Understanding, ECCV 2018



	Kinetics400
C3D	59.5%
I3D	71.1%
P3D	72.6%
ECO	70.0%
Non-local	77.7%

Wang etal, Non-local Neural Networks, CVPR 2018

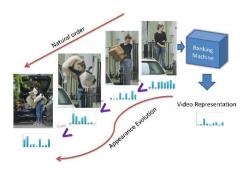


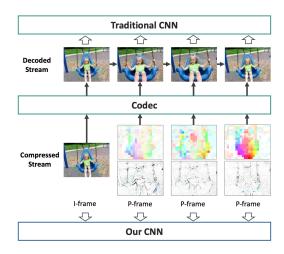
	Kinetics400
C3D	59.5%
I3D	71.1%
P3D	72.6%
ECO	70.0%
Non-local	77.7%
SlowFast	78.0%

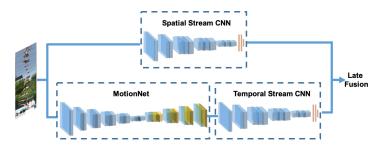
Feichtenhofer etal, SlowFast Networks for Video Recognition, ICCV 2019

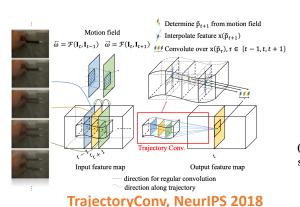
	Kinetics400
C3D	59.5%
I3D	71.1%
P3D	72.6%
ECO	70.0%
Non-local	77.7%
SlowFast	77.9%
X3D	80.4%

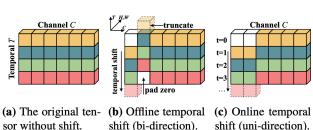
Feichtenhofer, X3D: Expanding Architectures for Efficient Video Recognition, CVPR 2020



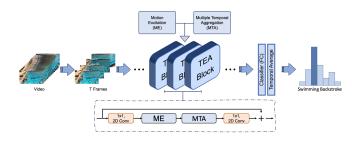



Other Motion Modeling





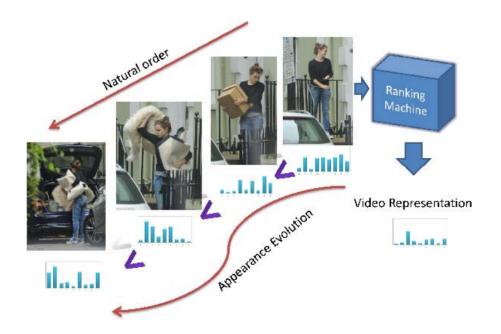
Rank Pooling, CVPR 15/16



Compressed videos, CVPR 2018

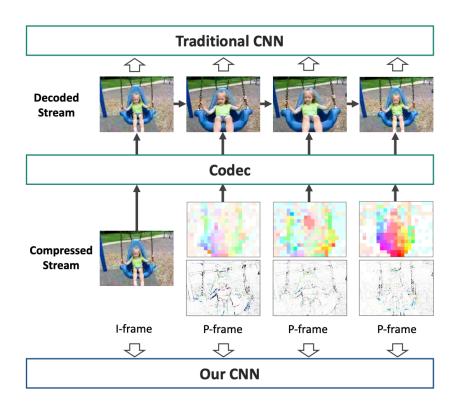
TSM, ICCV 2019

Hidden TSN, ACCV 2018



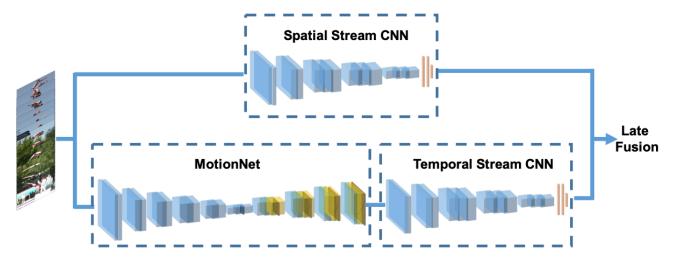
TEA, CVPR 2020

Rank Pooling


Temporal order matters

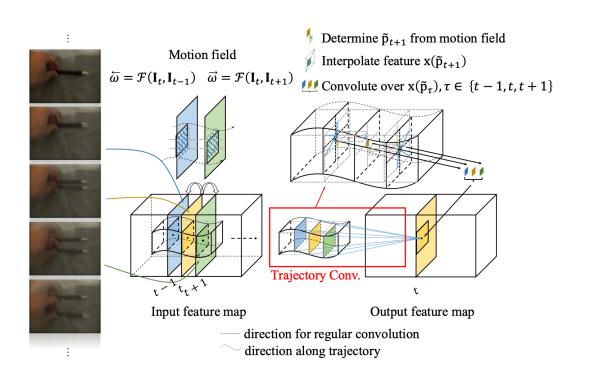
Fernando etal, Modeling Video Evolution For Action Recognition, CVPR 2015

Compressed Videos


Motion vectors replaces optical flow

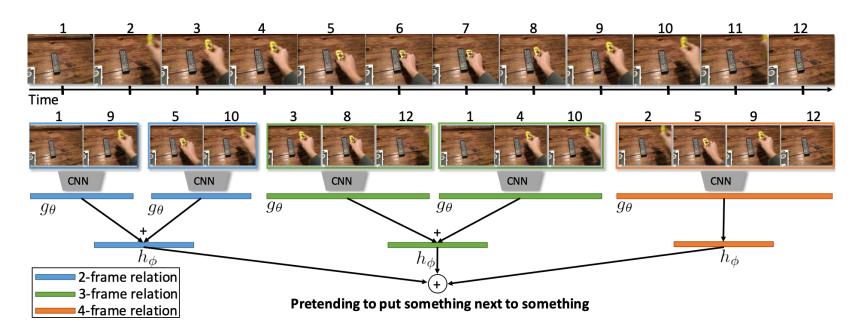
Wu etal, Compressed Video Action Recognition, CVPR 2018

Flow-mimic Approaches


End-to-end learning of motion information by image reconstruction

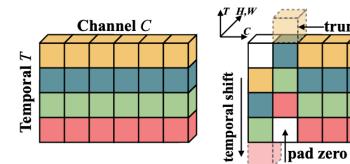
Zhu etal, Hidden Two-Stream Convolutional Networks for Action Recognition, ACCV 2018

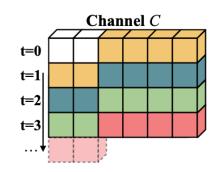
Trajectory-based


Replace temporal convolution by trajectory convolution.

Zhao etal, Trajectory Convolution for Action Recognition, NeurIPS 2018

Relationship-based


Relationship reasoning

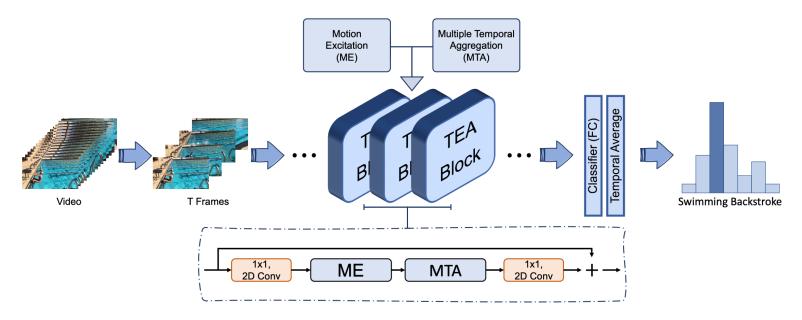

Zhou etal, Temporal Relational Reasoning in Videos, ECCV 2018

Shifting

- (a) The original ten- (b) Offline temporal sor without shift.
- shift (bi-direction).

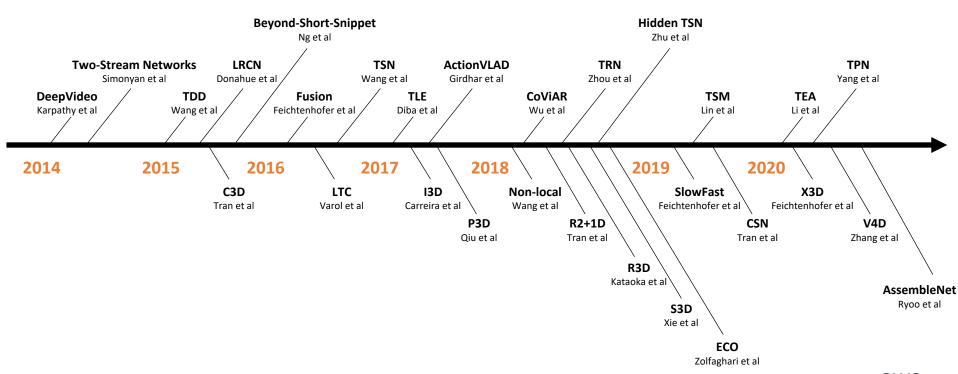
-truncate

(c) Online temporal shift (uni-direction).


Moving the feature map along the temporal dimension, enabling 2D Conv to model motion

Lin etal, TSM: Temporal Shift Module for Efficient Video Understanding, ICCV 2019

Attention



Using attention for motion modeling for 2D CNNs

Li etal, TEA: Temporal Excitation and Aggregation for Action Recognition, CVPR 2020

GluonCV Video Toolkit

https://gluon-cv.mxnet.io/model_zoo/action_recognition.html

Model Zoo

Name	Pretrained	Segments	Length	1	Hashtag	Command	Log	i3d_inceptionv1_kinetics400 [4]	Imagablat	1	32	71.8	81e0be10	shell	log
inceptionv1_kinetics400 [3]	ImageNet	7	1	69.1	6dcdafb1	shell	log	isd_inceptionv1_kinetics400 [4]	ImageNet	'	(64/2)	/1.8	81600610	<u>script</u>	<u>log</u>
inceptionv3_kinetics400 [3]	ImageNet	7	1	72.5	8a4a6946	shell script	<u>log</u>	i3d_inceptionv3_kinetics400 [4]	ImageNet	1	32 (64/2)	73.6	f14f8a99	shell script	<u>log</u>
resnet18_v1b_kinetics400 [3]	ImageNet	7	1	65.5	46d5a985	shell script	log	i3d_resnet50_v1_kinetics400 4	ImageNet	1	32 (64/2)	74.0	568a722e	shell script	<u>log</u>
resnet34_v1b_kinetics400 [3]	ImageNet	7	1	69.1	8a8d0d8d	shell script	<u>log</u>	i3d_resnet101_v1_kinetics400 [4]	ImageNet	1	32 (64/2)	75.1	6b69f655	shell script	<u>log</u>
resnet50_v1b_kinetics400 [3]	ImageNet	7	1	69.9	cc757e5c	shell script	log	i3d_nl5_resnet50_v1_kinetics400 [7]	ImageNet	1	32 (64/2)	75.2	3c0e47ea	shell script	<u>log</u>
resnet101_v1b_kinetics400 3	ImageNet	7	1	71.3	5bb6098e	shell script	<u>log</u>	i3d_nl10_resnet50_v1_kinetics400			32			<u>shell</u>	
resnet152_v1b_kinetics400 [3]	ImageNet	7	1	71.5	9bc70c66	shell	<u>log</u>	[7]	ImageNet	1	(64/2)	75.3	bfb58c41	script	<u>log</u>
c3d_kinetics400 [2]	Scratch	1	16 (32/2)	59.5	a007b5fa	shell script	<u>log</u>	i3d_nl5_resnet101_v1_kinetics400	ImageNet	1	32 (64/2)	76.0	fbfc1d30	shell script	<u>log</u>
p3d_resnet50_kinetics400 [5]	Scratch	1	16 (32/2)	71.6	671ba81c	shell script	<u>log</u>	i3d_nl10_resnet101_v1_kinetics400 [7]	ImageNet	1	32 (64/2)	76.1	59186c31	shell script	<u>log</u>
p3d_resnet101_kinetics400 [5]	Scratch	1	16 (32/2)	72.6	b30e3a63	shell script	<u>log</u>	slowfast_4x16_resnet50_kinetics400	Scratch	1	36 (64/1)	75.3	9d650f51	shell script	<u>log</u>
r2plus1d_resnet18_kinetics400 [6]	Scratch	1	16 (32/2)	70.8	5a14d1f9	shell script	<u>log</u>	slowfast_8x8_resnet50_kinetics400	Scratch	1	40 (64/1)	76.6	d6b25339	shell script	<u>log</u>
r2plus1d_resnet34_kinetics400 6	Scratch	1	16 (32/2)	71.6	de2e592b	shell script	<u>log</u>	slowfast_8x8_resnet101_kinetics400			40	77.0	0.14.7	shell	
r2plus1d_resnet50_kinetics400 [6]	Scratch	1	16 (32/2)	73.9	deaefb14	shell script	<u>log</u>	[8]	Scratch	1	(64/1)	77.2	fbde1a7c	script	<u>log</u>

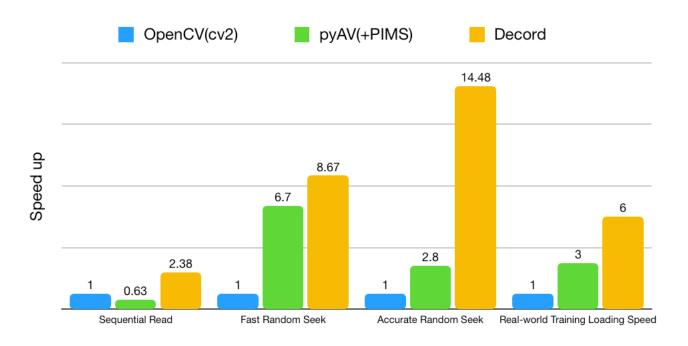
Model Zoo

Name	Pretrained	Segments	Length	1	Hashtag	Command	Log	i3d_inceptionv1_kinetics400 [4]	ImageNet	1	32	71.8	81e0be10	shell	log
inceptionv1_kinetics400 [3]	ImageNet	7	1	69.1	6dcdafb1	shell script	<u>log</u>	Tod_modphon / _minding tod []	magoriot		(64/2)	, 1.0	0.0050.0	script	<u>10</u> 9
inceptionv3_kinetics400 [3]	ImageNet	7	1	72.5	8a4a6946	shell script	<u>log</u>	i3d_inceptionv3_kinetics400 [4]	ImageNet	1	32 (64/2)	73.6	f14f8a99	shell script	<u>log</u>
resnet18_v1b_kinetics400 3	ImageNet	7	1	65.5	46d5a985	shell script	<u>log</u>	i3d_resnet50_v1_kinetics400 [4]	ImageNet	1	32 (64/2)	74.0	568a722e	shell script	<u>log</u>
resnet34_v1b_kinetics400 [3]	ImageNet	7	1	69.1	8a8d0d8d	shell script	<u>log</u>	i3d_resnet101_v1_kinetics400 [4]	ImageNet	1	32 (64/2)	75.1	6b69f655	shell script	<u>log</u>
resnet50_v1b_kinetics400 [3]	ImageNet	7	1	6	TSN	Л. TV	N. T	PN, TEA, etc. are	comir	าฮ	32 (64/2)	75.2	3c0e47ea	shell script	<u>log</u>
resnet101_v1b_kinetics400 3	ImageNet	7	1	7		,		future release!		.0	32			<u>shell</u>	
resnet152_v1b_kinetics400 [3]	ImageNet	7	1	7			""	Tuture release:			(64/2)	75.3	bfb58c41	script	<u>log</u>
c3d_kinetics400 [2]	Scratch	1	16 (32/2)	59.5	a007b5fa	shell script	<u>log</u>	7	ImageNet	1	32 (64/2)	76.0	fbfc1d30	shell script	<u>log</u>
p3d_resnet50_kinetics400 5	Scratch	1	16 (32/2)	71.6	671ba81c	shell script	<u>log</u>	i3d_nl10_resnet101_v1_kinetics400	ImageNet	1	32 (64/2)	76.1	59186c31	shell script	<u>log</u>
p3d_resnet101_kinetics400 [5]	Scratch	1	16 (32/2)	72.6	b30e3a63	shell script	<u>log</u>	slowfast_4x16_resnet50_kinetics400	Scratch	1	36 (64/1)	75.3	9d650f51	shell script	<u>log</u>
r2plus1d_resnet18_kinetics400 [6]	Scratch	1	16 (32/2)	70.8	5a14d1f9	shell script	<u>log</u>	slowfast_8x8_resnet50_kinetics400	Scratch	1	40 (64/1)	76.6	d6b25339	shell script	<u>log</u>
r2plus1d_resnet34_kinetics400 [6]	Scratch	1	16 (32/2)	71.6	de2e592b	shell script	<u>log</u>	slowfast_8x8_resnet101_kinetics400	Caratala	1	40	77.0	fb.d.1.20	shell	les
r2plus1d_resnet50_kinetics400 [6]	Scratch	1	16 (32/2)	73.9	deaefb14	shell script	<u>log</u>	8	Scratch	1	(64/1)	77.2	fbde1a7c	script	<u>log</u>

Datasets

UCF101 HMDB51 Somethig-Something-v1/v2 Kinetics400

Datasets


UCF101 HMDB51 Somethig-Something-v1/v2 Kinetics400

HACS Kinetics600/700 Moment in time

Fast Video Reader: Decord

Prepare datasets Inference Training Fine-tuning Feature extraction Distributed training

Action Recognition

Pre-trained TSN Models on UCF101

Recognize human actions in real-world videos with pretrained TSN models

Training TSN models on UCF101

Hands on TSN action recognition model training on UCF101 dataset

Pre-trained I3D Models on

Recognize human actions in real-world videos with pretrained I3D models

Training SlowFast Models on Kinetics400

Hands on SlowFast action recognition model training on Kinetics400 dataset

Kinetics400

Training I3D Models on Kinetics400

Hands on I3D action recognition model training on Kinetics400 dataset

Pre-trained SlowFast Models on Kinetics400

Recognize human actions in real-world videos with pretrained SlowFast models

> Inference on your own videos using pre-trained models

Inference on your own videos using pre-trained models and save the predictions.

Distributed training of deep video models: SlowFast

Tutorials

Hands on distributed training of SlowFast models on Kinetics400 dataset.

Fine-tuning video mdoels on Your Own Dataset

Hands on SOTA video models fine-tuning on your own dataset

Extracting video features from pre-trained models

Extracting video features from pre-trained models on vour own videos

Customized Usage

We provide a generic video dataloader, VideoClsCustom, for users to load their data.

- 1. Only need a text file, no specific hierarchy required.
- Support both frame loading and video loading
- 3. Support all video classification datasets

```
def __init__(self,
             root,
             setting,
             train=True,
             test mode=False,
             name pattern='img %05d.jpg',
             video ext='mp4',
             is_color=True,
             modality='rgb',
             num_segments=1,
             num_crop=1,
             new_length=1,
             new step=1,
             new width=340,
             new_height=256,
             target_width=224,
             target_height=224,
             temporal jitter=False,
             video loader=False,
             use decord=False,
             slowfast=False.
             slow_temporal_stride=16,
             fast_temporal_stride=2,
             transform=None):
```


Customized Usage

Prepare datasets

Inference
Training
Fine-tuning
Feature extraction

Distributed training

All you need is a text file!

Any number when using video loader

Customized Usage

We provide several off-the-shelf customized popular model for users to train/fine-tune on their data, e.g., C2D, I3D and SlowFast.

More or Less Computing Resources

- Support multi-GPU training
- Support multi-machine distributed training 6x speed up using 8 machines
- Support single-GPU training on large models with gradient accumulation can train I3D with 1 GPU as well.

Model	Dataset	Batch Size	Speedup (INT8/FP32)	FP32 Accuracy	INT8 Accuracy
vgg16_ucf101	UCF101	64	4.46	81.86	81.41
inceptionv3_ucf101	UCF101	64	5.16	86.92	86.55
resnet18_v1b_kinetics400	Kinetics400	64	5.24	63.29	63.14
resnet50_v1b_kinetics400	Kinetics400	64	6.78	68.08	68.15
inceptionv3_kinetics400	Kinetics400	64	5.29	67.93	67.92

INT8 models: same performance with ~5x speed up

More details about deployment using TVM can be seen in the next talk.

Some observations

Classification head

self.fc = nn.Dense(in_units=self.feat_dim, units=nclass, weight_initializer=init.Normal(sigma=self.init_std))

	UC	F101	Kinetics400				
init_std	0.01	0.001	0.01	0.001			
TSN	84.3	86.1	69.1	68.7			
I3D	94.5	95.6	74.0	73.4			

init std: important

A small value for small-scale datasets, particularly during fine-tuning A big value for large-scale datasets with more classes, particularly training from scratch

Some observations

Number of frames used during training and testing

All frames sampled from a 64-frame clip

Not stable!

	ics400 esNet50)	Test					
(130_116	SNELJUJ	8	16	32			
Train	8	73.5	73.3	73.8			
	16	72.4	73.8	73.8			
	32	72.1	72.9	74.0			

Some observations

Do we need 2D ImageNet pre-trained weights as model initialization for 3D CNNs?

No, at least for most 3D CNNs, like C3D, P3D, R2+1D, I3D, S3D and SlowFast.

Conclusion

- Video is the next battle field.
- > Try GluonCV video toolkit! Welcome to leave issues, request features, and make contributions. https://gluon-cv.mxnet.io/
- Stay tuned. We have a survey paper coming! (200+ papers reviewed)
- All pre-recorded videos, slides and the survey paper will be uploaded to https://cvpr20-video.mxnet.io/.

